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ABSTRACT

Much e-learning content has been produced and is being delivered as uninspiring page-turners. Although advanced
learning technologies such as Intelligent Tutoring Systems (ITSs) have been shown to produce significant learning
gains, it is prohibitively expensive to convert existing e-learning content into more interactive learning environments.
In this paper we describe a process that may produce greater learning gains with existing e-learning content with
minimal conversion time and expense. We call this ITS-enhanced delivery of shared content objects (SCOs). This
process was developed by the research associates of the Workforce ADL Co-Lab at the University of Memphis. It is
based on years of extensive research and development in cognitive learning theory, human tutoring, ITSs, and other
advanced learning systems. The prototype we will present is supported by a contract from the Joint ADL Co-Lab.

The core of this process is a lightweight natural language processing (NLP) component that can be added to any SCO.
In this process, the following scenario occurs: A student is participating in page-turning instruction. The learning
management system (LMS) asks the student a question about the content. The NLP component understands the
students response and offers meaningful feedback. The LMS requires the student to reflect, explain, or otherwise
spend more time with the content. The resulting enhanced instructional content is a SCO that can be delivered
in any SCORM-conformant LMS. The pedagogical foundation guiding the interaction between the student and the
LMS is based on analysis of hundreds of hours of human tutoring and numerous studies of effective ITSs (including
AutoTutor, developed by our Workforce ADL Co-lab research associates). Our paper will describe implementation
of the NLP component, communication between API and LMS, and the feedback process for the student. We will
demonstrate some enhanced SCOs that are used in the current Joint Knowledge Online (JKO) initiative.
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INTRODUCTION

E-learning has benefited from the development of stan-
dardized formats for the delivery and use of learning ob-
jects. One such standard, the Sharable Content Ob-
ject Reference Model(SCORM, 2004), was developed
to address the need for interoperability of learning ob-
jects within and between learning management systems.
SCORM provides a standard format for creating learning
objects which can be easily transferred from system to
system. SCORM is a collection of specifications adapted
from multiple sources that enable interoperability, ac-
cessibility and reuse of Web-based instructional content.
Following the SCORM standard, instructional design-
ers and developers can produce instructional content for
learning management systems much more rapidly.

SCORM is a technological enabler of delivering learning
opportunities any time, anywhere, under any context, on
any system. However, SCORM is not a specification for
the way instruction is presented, nor does it insure the
quality of the instruction, or efficacy of learning.

Despite its advantages, SCORM has not enabled signifi-
cant progress toward developing standards for more ad-
vanced learning environments such as intelligent tutor-
ing systems (ITSs). Part of the reason for this is that
SCORM specifies fixed packages of content. By con-
trast, content used in ITSs tends to be structured to en-
able flexible delivery in response to moment-by-moment
actions of the student. In an ITS, delivery and con-
tent are yoked. Thus SCORM is difficult to apply in
an advanced learning environment such as an ITS, and
certainly does not provide a standard method for devel-
oping ITS content. Because of the many documented
benefits of ITS (anderson, Corbett, Koedinger & Pel-
letier, 1995; Chi, Siler, Jeong, Yamauchi & Hausmann,
2001), the gap between SCORM standards and ITS is
one that the developers of SCORM (the Advanced Dis-
tributed Learning Co-Lab, or ADL), ultimately intend to
bridge(SCORM, 2004). The ADL vision for SCORM is
that as the available inventory of SCORM objects grows,
relevant objects can be assembled and used by an ITS as
an intelligent, real-time interactive lesson that includes
natural language interaction.

Presently the e-learning field is awash with non-
interactive page-turning learning environments(Person,

O’Brien, Flinn & Archer, 2005). These learning environ-
ments are less than optimal. For example, these learn-
ing environments are non-adaptive, with minimal or no
feedback provided to the student. The most effective
learning environment is one-on-one expert human tutor-
ing(Chi et al., 2001; Person et al., 2005; Graesser, Ven-
tura, Jackson, Mueller, Hu & Person, 2003; Graesser &
Person, 1994), which is difficult to replicate, even within
an ITS. Modifying an effective ITS by making it domain-
independent and capable of using reusable content on its
own is an even more daunting task. In this paper we
propose a method by which we can begin to emulate the
nature of an advanced ITS while using standard SCORM
content.

TOWARD THE IDEAL LEARNING SYSTEM

Constructivist theories of learning emphasize the im-
portance of the student actively constructing expla-
nations(Chi et al., 2001; Graesser, Wiemer-Hastings,
Kreuz, Wiemer-Hastings & Marquis, 2000). Researchers
have developed intelligent tutoring systems that adap-
tively respond to a students knowledge and help con-
struct explanations(anderson et al., 1995; VanLehn,
Siler, Murray, Yamauchi & Baggett, 2003). Empirical
research in discourse processing has documented the col-
laborative, constructive activities that frequently occur
during human tutoring.

It is well documented that deeper processing leads to
more robust learning(Craik & Lockhart, 1972). Stu-
dents that spend more time thinking about a topic will
perform better on subsequent tests on the topic(Person
et al., 2005). Students that form connections between
the instructional topic and other, similar topics also show
better recall(Craik & Lockhart, 1972). Consequently, a
primary goal in instruction is encouraging students to
elaborate on the instructional content, process it deeply,
and relate it to pre-existing knowledge structures.

One-on-one human tutoring produces substantial learn-
ing gains compared to other forms of learning, such as
classrooms and reading from a text(anderson et al., 1995;
Person et al., 2005; Graesser, VanLehn, Rose, P. & Har-
ter, 2001). One of the reasons for the success of one-on-
one human tutoring is the opportunity for the student to
elaborate on the instructional content through conver-
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sation. Page-turning software, whether using SCORM
objects or not, do not match the learning gains enabled
by one-on-one human tutoring.

A SIMPLIFIED INTELLIGENT TUTORING
SYSTEM

In the typical human tutoring scenario, a student is
paired with a person who is an expert in both the con-
tent to be learned, and in pedagogical techniques. The
student attempts to solve problems or answer questions
about the content. The tutor evaluates the student’s
work in real time, and gives appropriate feedback to
help the student learn. The tutor’s responses may be
in the form of prompts, hints, challenges, paraphrasing,
encouragement, and other forms of interaction(Graesser,
Wiemer-Hastings, Wiemer-Hastings, Kreuz & the Tutor-
ing Research Group., 1999).

For example, a typical dialog between tutor and student
may be as simple as the following(Graesser et al., 1999):
Tutor’s Question: Suppose a runner is running in a
straight line at a constant speed, while carrying a football.
While running, the runner throws the football straight
up, over his head. Where will the football land? Explain
why.
Expected Answer: The football will land in the run-
ner’s hands.
Following the question from the tutor, the student and
tutor interact in an alternating turns. The student re-
sponds to the tutor’s questions and modifies his or her
answers based on the tutor’s feedback:

1. I think–correct me if I am wrong, it will land back in
the runner’s hands.

2. Positive feedback from the tutor

3. The reason is clear; the runner and the ball have the
same horizontal speed.

4. Positive feedback from the tutor

5. The football will land in the runner’s hands.

6. ...

Such interactions between tutor and student have
been implemented and analyzed via AutoTutor, an
ITS created by researchers with the University of
Memphis(Franceschetti, Karnavat, Marineau, McCallie,
Olde, Terry & Graesser, 2001). The researchers found
that questioning a student about instructional content is
an effective way of encouraging deep processing and pro-
moting self-monitoring–knowing whether the content has
in fact been learned. Students learn significantly better
using AutoTutor than reading non-interactive content

when AutoTutor was used to tutor students in qualita-
tive physics (Graesser et al., 2001; Franceschetti et al.,
2001).

Our goal in this paper is to describe an ITS that enables
interactive dialog between the student and a virtual tu-
tor, so the tutor will help the student engage in deeper
cognitive processing about the instructional content dur-
ing the interaction. We call this Intelligent delivery of
SCOs (sharable content objects). A SCO (as defined
by the SCORM standard) is an independent object that
can be delivered as instructional content within a learn-
ing environment.

INTELLIGENT DELIVERY OF SCOS

Is there a way to incorporate existing SCOs that are of-
ten used in page-turning products to build an intelligent
and more interactive learning environment with the ef-
fectiveness of an ITS? We believe that the most effective
approach to bridging the gap between SCORM content
and ITSs is via an intermediate step–enhancing existing
SCORM content. We describe this process as content
enhancement. Along with bridging this gap, a content
enhancement system has educational benefits in its own
right.

Enhancing SCORM content means that the student
will have access to supplementary material, previously
learned content, related topics, summaries, evaluative
questions, and answers to content questions. Content
enhancement means that for each ”page” of content, the
student will spend more time reading and thinking about
the content, resulting in learning gainsmuch like a human
tutor inspires cognitive disequilibrium (Graesser & Olde,
2003; Graesser, Hu & McNamara, 2005) which then re-
quires increased student cognition.

We do not propose at this stage to describe a method
for building a SCORM-conformant ITS. Instead, we have
developed a system for elaborating upon SCORM con-
tent in ways that facilitate learning, and that will ulti-
mately be usable by an ITS.

We believe the existing content of early and present
day learning environments can be leveraged in advanced
learning management systems that enhance the delivery
of this content and increase the amount of learning that
occurs. Using existing SCOs in an intelligent system can
enhance learning much like an ITS. There are some basic
requirements for this approach:

No SCOs Conversion: Instead of converting SCOs in
SCORM 1.2 courses to SCOs that are compatible with
SCORM 2004 courses (where possible adaptive learn-
ing can be achieved), we propose to use SCOs in their
original form and deliver them in an enhanced envi-
ronment.
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No new LMS will be created: We do not propose to
build an LMS (learning management system) that will
have the enhanced delivery features. We instead pro-
pose to provide utilities that can be used by existing
SCORM-compatible LMSs.

No new information will be added to SCOs: We
propose the use of existing metadata for the SCOs
and available text information (content) in the raw
data of a SCO.

We believe that the most constructive approach that sat-
isfies the above three basic requirements is to

Maximum use of existing information: Make the
best use of existing metadata and raw media of SCOs

Use existing computational linguistics tools: use
computational linguistics tools to help the student
understand the content in the SCO.

We call this process content enhancement. Implementa-
tion of such enhancements are based on learning theories
developed in cognitive psychology.

Such content enhancement means that for one page of
content, the student will spend significantly more time
reading, thinking, and cognitively digesting the content,
hopefully resulting in significant learning gains. This
process is analogous to the way a human tutor inspires
cognitive disequilibrium which necessitates more cogni-
tive activity by the student.

Semantic representation of leaning content

To enable the student’s interaction with the instruc-
tional content mediated by the tutor, the tutor needs
to understand the student’s contributions in order to
offer appropriate feedback. Understanding the stu-
dent’s contribution, especially in natural language, re-
quires semantic understanding of the content. We will
use a semantic engine to encode the instructional content
(metadata, textual information presented, and expected
answers to the tutor’s questions). In this report, we
used Latent Semantic Analysis (LSA) as our semantic
engine(Deerwester, Dumais, Furnas, Landauer & Harsh-
man, 1990; Dumais, Furnas & Landauer, 1988; Landauer
& Dumais, 1997; Graesser, Penumatsa, Ventura, Cai &
Hu, 2007; Hu, Cai, Wiemer-Hasting, Graesser & McNa-
mara, 2007).

Latent Semantic Analysis (LSA) LSA is one the
most common techniques for the encoding and represen-
tation of semantic information for a given body of writ-
ten text. LSA is a generalization of familiar represen-
tations such as keyword, extended keywords method(Hu

et al., 2007). Creating an LSA ”space” requires exten-
sive computation, but the steps involved are actually
quite simple (Deerwester et al., 1990; Landauer & Du-
mais, 1997; Hu, Cai, Graesser, Louwerse, Olney, Penu-
matsa & TRG, 2003; Hu, Cai, Franceschetti, Penumatsa,
Graesser, Louwerse, McNamara & TRG, 2003; Hu et al.,
2007).

Data Acquisition: First we collect a large body dig-
itized of texts in their natural structure (keeping the
original organization, such as a book, chapter, sec-
tion, paragraph, sentence, phrase, or word). Assume
we have M paragraphs and N words. We then create
a so-called word-document matrix where the columns
are indexed paragraphs and rows are indexed words

A = (fij ×G(i)× L(i, j))i,j .

where i ≤ N , j ≤Mand Each entry (i, j) is a function
of the frequency of the word i in the paragraph j,
and some measures of importance of word i, G(i), and
importance of word i in paragraph j, L(i, j).

Singular Value Decomposition (SVD): SVD de-
composes the A three matrices A = UΣVT, where
U has the same number of rows as the words, and V
has the same number of columns as the number of
paragraphs.

Dimension Reduction: Instead of using the all the
dimensions in U, which is the number of diagonal
elements of Σ, we only use the first K dimensions
(300 ≤ K ≤ 500) in U. We denote it as UK . Each
word is represented as K dimensional vector. We call
it an LSA vector (or LSA index), which represent the
”semantics” of the corresponding word.

LSA is only one of many methods one can use to repre-
sent semantics. In general, semantics are represented by
numerical vectors and also use some algebraic operations
to find ”semantic” relations. In the case of LSA, the
semantic relations between words is measured by sim-
ple normalized dot-product, between two word vectors,
which is called cosine match. Semantic representation
of words can be extended to phrases, sentences, even
documents. In LSA, semantic representation of phrases,
sentences, or any collection of words can be represented
by the algebraic sum of the semantic vectors of the words
involved. In the same fashion, the semantic relations be-
tween phrases, paragraphs, etc. can be obtained just as
it is for words because they have the same vector repre-
sentation.

STUDENT’S CHARACTERISTICS CURVES
(LCC)

LSA has been widely used in information re-
trieval(Dumais et al., 1988; Graesser, Hu, Person, Jack-
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son & Toth, 2002), similarity measurements between
texts(Hu et al., 2007), text cohesion analysis(Foltz,
Kintsch & Landauer, 1998), and intelligent tutor-
ing systems (ITS)(Graesser, Wiemer-Hastings, Wiemer-
Hastings, Harter, Person & the TRG., 2000; Graesser,
Hu, Olde, Ventura, Olney, Louwerse, Franceschetti &
Person, 2002). In this report, we provide a way to use
LSA (or other semantic representations) to enhance the
delivery of instructional content. The idea is as follows:

1. Represent instructional content (metadata from
SCOs, text from the instructional content, questions,
and expected answers) in the form of semantic vectors.

2. Encode the student’s contribution using the same se-
mantic engine.

3. Compute the similarity between the student’s input
and the stored answers

4. Offer feedback so the student knows if the response
to the tutor’s question was relevant to the answer

The entire process can be understood in terms of key-
word matching(Hu et al., 2007). In fact, keyword match-
ing inspired the approach we present here. Consider a
case where a student responds to a tutor’s question in
multiple turns. In other words, the student could not
provide the complete answer in a single response. What
would be a reasonable way that a human tutor would
react to a sequence of incomplete answers?

Old New
Relevant O-R N-R
irrelevant O-IR N-IR

Table 1: Decomposition of student’s contribution se-
quence. N-R: New & relevant; N-IR: New & Irrelevant;
O-R: Old & Relevant; and O-IR: Old & Irrelevant.

If we denote the sequence of contributions as si, i =
1, ..., I, for every contribution, the tutor would give feed-
back based on the four different types of information (See
Table 1) for each contribution from student.

• Relevant to the answer

– New contribution
– Old contribution

• Irrelevant to the answer

– New contribution
– Old contribution

It is understandable that a human tutor would offer pos-
itive feedback when a student is providing new and rel-
evant (N-R) contribution. Furthermore, if a student is
actively constructing relevant answers, one would see a
non-decrease value for the cell (N-R) in a sequence of
responses. In the same fashion, other cells can be used
as an indication of a student’s knowledge. For example,
an increasing value for the (N-IR) would indicate the
lack of relevant knowledge. Consider the characteristics
of the four cells in Table 1. We call them the student’s
characteristics curves (LCC).

One of the challenges of an ITS is to create a student
model(Graesser, Person, Harter & TRG, 2001) –namely,
try to assess a student’s knowledge. For example, an
experienced human tutor can estimate how much a stu-
dent knows or does not know by evaluating a student’s
answers to key questions. Furthermore, a human tutor
can provide feedback to help a student actively construct
responses that are relevant to the questions asked. We
believe the LCC is a solution that allows an ITS to create
a student model and offer appropriate feedback.

Given that there are semantic vectors for answers a, and
si, i = 1, ..., (k − 1), the kth value of the LCC can be
constructed in the following steps:

1. decompose sk into two vectors sk,1, sk,2:
sk,1 parallel to the answer vector, contains relevant
information.
sk,2 perpendicular to the answer, contains irrelevant
information.

2. create spanned subspace from previous L responses,
si, i = (k − L), ..., (k − 1). L = 0 means no previous
response is considered. Denote it as SL,i.

3. decompose sk,1 into two vectors:

• sk,1,1 is the projection of sk,1 to subspace SL,i,
sk,1,2 is projection of sk,1 to the norm of norm SL,i.
• sk,2,1 is the projection of sk,2 to subspace SL,i,

sk,2,2 is projection of sk,2 to the norm of norm SL,i.

Following steps 1 – 3, LCC values for the kth response
can be obtained (Table 2).

Old New
Relevant cos (sk, sk,1,1) cos (sk, sk,2,1)
irrelevant cos (sk, sk,1,2) cos (sk, sk,2,2)

Table 2: Computation of kth values for LCC when se-
mantic space used is LSA.
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APPLICATION OF LCC IN ELEARNING

As seen in the previous section, LCC curves are deter-
mined by several factors:

1. Knowledge representation: Domain and encoding
method of the semantic space

2. Content information: Answers to the tutor’s question

3. Computation parameters: There are several parame-
ters, such as the number of previous responses in the
student’s response history.

From items 2 and 3 above, LCC may not be used as a
general purpose student model. Instead, LCC can only
be used as a context dependent student model. For this
reason, simulations are used to create LCC based on
preset parameters.

Figure 1: p = 0.1

Simulate LCC

To illustrate the simulation, consider the following sim-
plified situation that specifies an interactive learning en-
vironment that involves a student and a tutor:

• G possible glossary terms in a given course

• A glossary terms contained in an answer key for a
given question

• r: number of glossary terms that appear in each of the
students’ responses

• In each response, there are probability p that a glos-
sary term will be in the answer key

Figure 2: p = 0.5

Obviously, this is a simplified scenario compared to
the complicated interaction that occurs during student
learning. However, this scenario will approximate cer-
tain characteristics of a student’s ability and the domain.
For example, R and p combined could be used to describe
how much relevant information each response contains.
Using the algorithm described above, we are able to sim-
ulate a LCC for any combination of parameter values.
For example, Figure 1, 2, and 3 are simulated results for
a sequence of 20 responses where the number of terms in
G is 1000, the size of ideal answer is 40,the history size
is 2, and the size of the response is 10 with variable p
values.

LCC in interactive dialog

It is worth noting that the computation of LCC is rel-
atively simple. Usually, semantic processing requires
fairly extensive computing power. For example, gen-
erating LSA requires SVD for large sparse matrix A.
However, the LCC only uses ready-made semantic vec-
tors. The decomposing of vectors can be easily done at
the client level with a java applet or via ActionScript
(Adobe Flash). In applying LCC in e-learning, LCC for
a given content is usually simulated. To use LCC val-
ues to evaluate a student’s response, we first compute
the semantic similarity values between the student’s re-
sponse and the answer key. Then compare the similarity
values with the simulated LCC values. To illustrate how
LCC can be used, the following is a description of an ap-
plication that has been implemented at the Workforce
ADL Co-Lab. This is a very simple use of LCC where
the semantic vectors are orthogonal to each other (so it
is equivalent to keyword matching, instead of semantic
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Figure 3: p = 0.9

similarity).

Initial implementation A SCO was produced to
teach Newtonian Physics in a online qualitative physics
course. The instructional strategy entails enabling a con-
versation between the student and the ITS. The ITS
begins by posing the seed question: Suppose a runner
is running in a straight line at constant speed, and the
runner throws a pumpkin straight up. Where will the
pumpkin land? Explain why., and a sequence of short
questions. We were able to have the student interact
with the SCO in a conversational style (See Figure 4).

Figure 4: Example Implementation of LCC. Packaged
SCOs available upon request.

Current project In this section we describe our
project to produce an ITS-enhanced SCO for the Joint
Knowledge Development and Distribution Capability
(JKDDC). Our goal was to enable student interaction
with online content in a meaningful fashion in that the
student considered and then constructed answers to a
seed question. A typical question would be similar to
this: What thoughts occurred to you as you watched the
video? The student would then respond in kind with a
typed answer.

In order to use LCC as a student model to evaluate a
student’s response, these are the following steps:

Step 1: Prepare for simulation:

Identify a domain: Collect domain knowledge and
adapt or create a semantic space for the domain.

Encode course terms (G): For the given semantic
space, obtain semantic vectors of all the glossary
terms in the course.

Encode ideal answer (A): For the given semantic
space, obtain semantic vectors of all the glossary
terms in the ideal answer (of the seed question).

Step 2: Set simulation parameters:

Select knowledge parameter (p): This is not a
measure of knowledge but we can assume it is posi-
tively related to how much the student knows.

Select the size of response (r): Best if this is sim-
ilar to the number of terms in each sentence.

Step 3: Simulate and obtain LCC with the parameters
specified in Step 2.

For each set of parameters, there will be a set of LCC.
The set of LCC will be used in evaluating the student’s
response to the questions. For each response from the
student, four values will be obtained (as it is in table 2).
The values will be compared with the simulated LCC
values with similar parameters. The evaluation of the
student’s knowledge would be the a monotonic function
of p.

Future Plans

LCC methodology offers a promising solution in evalu-
ating quality of a student’s response to a given question.
In previous sections, we described how LCC is used in
evaluating responses from a question written prior to the
learning content. We believe the LCC can be used in
automatic fashion when combined with advanced tech-
niques in computational linguistics and available infor-
mation from course metadata. As it has been demon-
strated, in order to use LCC, one needs to have the
following elements (both for simulating LCC and using
LCC online):
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Figure 5: Example interactive SCO for Joint Knowledge
Online (JKO)

Domain knowledge in the form of semantic space:
This is used for encoding glossary terms in a given
course. This needs to be made available.

Glossary terms in the form of semantic vectors:
This is used to set a limited boundary for potential
students’ responses. This is usually available as part
of a complete course.

Key terms in answer key: This is part of the course
glossary terms that is included in the ideal answer of
a question.

Our future plan is to use LCC to evaluate the quality of
automatic interactive dialog between student and ITS.
This is challenging because the key terms in ideal an-
swers may not exist before the question is posed by the
ITS. In fact, the answers are dependent upon the con-
text. For this reason, there will no simulated LCC avail-
able to evaluate the student’s input.

Fortunately, the technology currently exists to produce
summaries, generate questions, answer questions, and
find related lexical items. Examples of such systems in-
clude LSA(Landauer & Littman, 1990; Landauer, Foltz
& Laham, 1998; Hu et al., 2007) and WordNet(Fellbaum,
1998). Implementation may require two further steps:
1) integrating all of these known techniques into a single
content enhancement system, and 2) building a system
that operates specifically on SCORM objects. Next, we
list a few technologies that have potential for use in the
next phase of development:

Summarization: Recent advances in computational
linguistics have resulted in sophisticated summariza-
tion technologies. For example, LSA can be used to

find those phrases or sentences which are most cen-
tral to the meaning of the whole document, and then
extract them to produce a summary. Summaries and
outlines are useful to help a student preview material,
and to provide an overview of the topic being covered.
Automatic summaries can provide the student with a
framework with which to understand the instructional
content.

Note that the summarization does not need to be well-
written. It can be a collection of relatively important
terms. The summary can be used as key terms in
answer key for a general question. For example, a
prompt from the ITS could be as general as Describe,
in your own words, what has been explained in the last
two slides. Obviously, all the content from the last
two slides can be used as an answer to the question.
Summarization techniques may extract more impor-
tant information from the content, and thereby aid in
the creation of LCC.

Question generation Questioning a student about in-
structional material is an effective way of encour-
aging deep processing, as well as promoting self-
monitoring (knowing whether the material has in fact
been learned). Technology currently exists to auto-
matically generate questions from a given text. Conse-
quently, existing technology can be incorporated into a
larger content enhancement system. This process will
motivate and engage the user to think more about the
content, thus aiding understanding of the content.

Research findings exist on how to generate deep rea-
soning questions. Based on Graesser and Person
(1994), there are three distinct levels of questions:

Level 1: SIMPLE or SHALLOW:
Verification: Is X true or false? Did an event oc-
cur?

Disjunctive: Is X, Y, or Z the case?
Concept completion: Who? What? When?
Where?

Example: What is an example or instance of a cat-
egory?

Level 2: INTERMEDIATE
Feature specification : What qualitative proper-
ties does entity X have?

Quantification: What is the value of a quantita-
tive variable? How much?

Definition questions: What does X mean?
Comparison: How is X similar to Y? How is X
different from Y?

Level 3: COMPLEX or DEEP
Interpretation: What concept or claim can be in-
ferred from a pattern of data?

Causal antecedent: Why did an event occur?
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Causal consequence: What are the consequences
of an event or state?

Goal orientation: What are the motives or goals
behind an agents action?

Instrumental/procedural: What plan or instru-
ment allows an agent to accomplish a goal?

Enablement: What object or resource allows an
agent to accomplish a goal?

Expectation: Why did some expected event not
occur?

Judgmental: What value does the answerer place
on an idea or advice?

Our plan is to determine which levels of questions are
most appropriate to apply LCC. Obviously, LCC may
not be appropriate for questions requiring precise an-
swers such as Verification questions in Level 1 and
Quantification questions in Level 2.

Question answering There have been several
question-answering (QA) and text retrieval com-
petitions that have generated a plethora of systems
for generating and finding relevant information (i.e.
TREC and MUC). In a content enhancement system,
QA systems will be used in somewhat differently than
the typical use. Specifically, QA systems willl be
used to provide relevant material, either as links or
explicit suggestions, based on key sentences (which in
turn are identified by summarization technologies, as
described above). Elaborating material provides the
opportunity for richer, deeper learning of the topic at
hand.
In contrast to summarization, question answering will
be useful to find answers from other parts of the do-
main. For example, this technique could be used to
initiate context-free dialog and obtain answers from
relevant course content that are not necessarily within
the last learning episode.

In addition to technologies available in computational
linguistics, SCORM standards make it possible to maxi-
mize the use of the technologies. The advantage of build-
ing a system that operates on SCORM objects is that
SCORM has become the most widely used international
standard for e-learning. For enhancing content, SCORM
provides an additional advantage or tool for e-learning
developers. Every SCORM object is packaged in meta-
data that provides information about the learning object
and its content, such as topic area, subject, and so on.
This metadata provides a rich source of information for
generating questions, summaries, related material, and
further learning. The system that we propose would take
full advantage of the metadata to provide rich additional
content to enhance learning.

In the SCORM 2004 release(SCORM, 2004), the content
aggregation model has XML schema binding for Learn-

ing Object Metadata, Content Structure and Packag-
ing, and Sequencing and Navigation information. This
SCORM metadata describes the different components of
the SCORM Content Model which includes components
like SCOs. Metadata is a form of labeling that enables
search and discovery of components. This metadata pro-
vides significant possibilities for enhancing and scaffold-
ing the learning process in real time and for providing
intelligent, tailored delivery. Until now, these possibili-
ties have not been fully realized.

Metadata can be collected in catalogs, as well as directly
packaged with the learning resource it describes. Learn-
ing resources that are described with metadata can be
systematically searched for and retrieved for use espe-
cially for enhanced delivery. The three forms of meta-
data are elaborated here with uses for enhanced delivery.

Asset metadata Asset metadata is metadata that can
be applied to raw media. This metadata is used to
facilitate reuse and discoverability, principally during
content creation, of such Assets within, for example,
a content repository. Having knowledge of the assets
that are presented allows an enhancement system to
prompt a student with questions or ask the student to
elaborate on the asset present.
The way asset metadata will be used is to extract
possible semantic information for the asset. An asset
could be an image illustrating some important princi-
ple. When a question is asked about an asset, the se-
mantic information from metadata on the asset (such
as a title or brief description) would be the used as
ideal answer.

Content organization metadata Content Organiza-
tion metadata describes simply the organization of the
content. The purpose of applying content organization
metadata is to make the content organization acces-
sible (enabling discoverability) within, for example, a
content repository and to provide descriptive informa-
tion about the content organization. Using content
organization in enhancement allows a system to for-
mulate queries about what has previously been pre-
sented and how it relates to the current content been
delivered.

SCO metadata SCO metadata provides descriptive
information about the content represented in the SCO.
This metadata is used to facilitate reuse and discover-
ability of such content within, for example, a content
repository. This descriptive information would enable
an enhancement system to ask general questions and
locate important content being delivered.
The SCO metadata combined with textual informa-
tion in the raw media is the primary source for answer-
ing context-dependent questions. Furthermore, infor-
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mation in SCO metadata can help determine the type
of questions that are appropriate for the given content.

In general, the rich and varied information available in
these kinds of metadata can be used by an ITS or e-
learning system to generate content in real time on de-
mand to increasing knowledge acquisition. Making use
of meta tags enables not only efficient content categoriza-
tion and retrieval, but also instructional enhancement.

SUMMARY

In this paper, we have introduced a methodology
that may enhance delivery of instructional content in
a distributed learning environment. Specifically, this
methodology encourages and enables interactive and
meaningful interaction between students and the con-
tent to be learned. The theoretical framework fol-
lows a constructivist theory of learning(Chi et al., 2001;
Aleven & Koedinger, 2002). The implementation strat-
egy is to create a student model by student’s charac-
teristics curves (LCC). Computationally, LCC is based
on (vector-based) semantic representation of terms and
some basic algorithms in linear algebra such as decom-
posing vectors to to predetermined directions (or obtain-
ing projections of vectors to predetermined subspaces).
The intuition for this methodology is from commonly
used keyword matching.

Two examples are presented in the paper. The first is
a simple implementation where LCC is created based
on keywords (or orthogonal semantic vectors for all the
terms). The second example is our current project where
LCC is created based on LSA vectors. Future research
and development plans are to incorporate more com-
putational linguistics utilities, and maximize the use of
SCORM metadata.

ACKNOWLEDGEMENTS

The authors would like to thanks all Workforce Ad-
vanced Distribution (ADL) Co-Lab research associates
who have contributed to this project. Special thanks go
to Drs. Art Graesser and David Dufty for their knowl-
edge of cognitive psychology and computational linguis-
tics. Mr. Zhiqiang Cai has been an important contrib-
utor to the early part of the project. We would like
to thank prior students of the first author: Eric Math-
ews and Suresh Susarla. This work is sponsored by the
support of Joint ADL Co-Lab through a Cooperative
Agreement (N61339-07-2-0001) and NSF Grant (NSF
SES-0616657) to the first author.

References

Aleven, V. & Koedinger, K. R. (2002). An effective
metacognitive strategy: Learning by doing and ex-

plaining with a computer-based cognitive tutor.
Cognitive Science, 26, 147–19.

anderson, J. R., Corbett, A. T., Koedinger, K. R., &
Pelletier, R. (1995). Cognitive tutors: Lessons
learned. Journal of the Learning Sciences, 4, 167–
207.

Chi, M. T. H., Siler, S. A., Jeong, H., Yamauchi, T., &
Hausmann, R. G. (2001). Learning from human
tutoring. Cognitive Science, 25, 471–533.

Craik, F. & Lockhart, R. (1972). Levels of processing. a
framework for memory research. Journal of Verbal
Learning and Verbal Behavior, 11, 671–684.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer,
T. K., & Harshman, R. (1990). Indexing by latent
semantic analysis. Journal of the American Society
For Information, 141, 391–407.

Dumais, S., Furnas, G., & Landauer, T. (1988). Using
latent semantic analysis to improve access to tex-
tual information. Proceedings of Computer Human
Interaction ’88.

Fellbaum, C. (1998). WordNet: An electronic lexical
database. MIT Press.

Foltz, P. W., Kintsch, W., & Landauer, T. K. (1998).
The measurement of textual coherence with latent
semantic analysis. Discourse Processes, 25, 285–
307.

Franceschetti, D., Karnavat, A., Marineau, J., McCal-
lie, G. L., Olde, B. A., Terry, B. L., & Graesser,
A. C. (2001). Development of physics text corpora
for latent semantic analysis. In Proceedings of the
23rd Annual Conference of the Cognitive Science
Society, (pp. 297–300). Mahwah, NJ: Erlbaum.

Graesser, A., Hu, X., Person, P., Jackson, T., & Toth, J.
(2002). Modules and information retrieval facilities
of the human use regulatory affairs advisor HU-
RAA. In Driscoll, M. & Reeves, T. C. (Eds.), Pro-
ceedings for E-Learning 2002: World Conference
on E-Learning in Corporate, Government, Health-
care, and Higher Education, (pp. 353–360). Mon-
treal, Canada: AACE.

Graesser, A. & Olde, B. (2003). How does one know
whether a person understand s a device? the qual-
ity of the questions the person asks when the device
breaks down. Journal of Educational Psychology,
95, 524–536.

Graesser, A., Person, N., Harter, D., & TRG (2001).
Teaching tactics and dialog in AutoTutor. Inter-
national Journal of Artificial Intelligence in Edu-
cation, 12, 257–279.

Graesser, A., VanLehn, K., Rose, C., P., J., & Harter,
D. (2001). Intelligent tutoring systems with cover-

2008 Paper No. 8218 Page 10 of 11



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

sational dialogue. AI Magazine, 22, 39–51.
Graesser, A., Wiemer-Hastings, P., Wiemer-Hastings,

K., Harter, D., Person, N., & the TRG. (2000).
Using latent semantic analysis to evaluate the con-
tributions of students in AutoTutor. Interactive
Learning Environments, 8, 128–148.

Graesser, A. C., Hu, X., & McNamara, D. (2005). Com-
puterized learning environments that incorporate
research in discourse psychology, cognitive science,
and computational linguistics. In A. Healy (Ed.),
Experimental Cognitive Psychology and its Appli-
cations: Festschrift in Honor of Lyle Bourne, Wal-
ter Kintsch, and Thomas Landaue (pp. 183 – 194).
Washington, D.C: American Psychological Associ-
ation.

Graesser, A. C., Hu, X., Olde, B. A., Ventura, M., Olney,
A., Louwerse, M., Franceschetti, D. R., & Person,
N. (2002). Implementing latent semantic analy-
sis in learning environments with conversational
agents and tutorial dialog. In Proceedings of the
24th Annual Meeting of the Cognitive Science So-
ciety, (pp.3̃7). Mahwah, NJ: Erlbaum.

Graesser, A. C., Penumatsa, P., Ventura, M., Cai, Z., &
Hu, X. (2007). Using LSA in AutoTutor: Learning
through mixed-initiative dialogue in natural lan-
guage. In M. S. D. . W. K. T. Landauer, D.S.
(Ed.), Handbook of Latent Semantic Analysis. (pp.
243–262). Mahwah, NJ: Erlbaum.

Graesser, A. C. & Person, N. (1994). Question asking
during tutoring. American Educational Research
Journal, 31, 104–137.

Graesser, A. C., Ventura, M., Jackson, G. T., Mueller,
J., Hu, X., & Person, N. (2003). The impact of
conversational navigational guides on the learning,
use, and perceptions of users of a web site. In
Proceedings of AAAI Spring Symposium 2003 on
Agent-Mediated Knowledge Management, (pp. 9–
14)., Palo Alto, CA. AAAI Press.

Graesser, A. C., Wiemer-Hastings, K., Kreuz, R.,
Wiemer-Hastings, P., & Marquis, K. (2000).
QUAID: A questionnaire evaluation aid for sur-
vey methodologists. Behavior Research Methods,
Instruments, and Computers, 32, 254–262.

Graesser, A. C., Wiemer-Hastings, K., Wiemer-
Hastings, P., Kreuz, R., & the Tutoring Re-
search Group. (1999). AutoTutor: A simulation
of a human tutor. Journal of Cognitive Systems
Research, 1, 35–51.

Hu, X., Cai, Z., Franceschetti, D., Penumatsa, P.,
Graesser, A. C., Louwerse, M., McNamara, D. S.,
& TRG (2003). LSA: The first dimension and di-

mensional weighting. In Alterman, R. & Hirsh, D.
(Eds.), Proceedings of the 25th Annual Conference
of the Cognitive Science Society, (pp. 587–592).,
Boston, MA. Cognitive Science Society.

Hu, X., Cai, Z., Graesser, A. C., Louwerse, M., Ol-
ney, A., Penumatsa, P., & TRG (2003). A re-
vised algorithm for latent semantic analysis. In
Walsh, G. G. . T. (Ed.), Proceedings of the 2003
International Joint Conference on Artificial Intel-
ligence, (pp. 1489–1491)., San Francisco. Morgan
Kaufmann.

Hu, X., Cai, Z., Wiemer-Hasting, P., Graesser, A., &
McNamara, D. (2007). Strengths, limitations, and
extensions of LSA. In D. S. T. Landauer, S. D.
McNamara, & W. Kintsch (Eds.), Handbook of La-
tent Semantic Analysis (pp. 401–426). Mahwah,
NJ: Erlbaum.

Landauer, T. K. & Dumais, S. T. (1997). A solution
to plato’s problem: The latent semantic analysis
theory of the acquisition, induction, and represen-
tation of knowledge. Psychological Review, 104,
211–240.

Landauer, T. K., Foltz, P. W., & Laham, D. (1998).
Introduction to latent semantic analysis. Discourse
Processes, 259–284.

Landauer, T. K. & Littman, M. L. (1990). Fully auto-
matic cross-language document retrieval using la-
tent semantic indexing. In Proceedings of the 6th
Annual Conferenceof the Centre for the New Ox-
ford English Dictionaryand Text Research, 31–38.

Person, N. K., O’Brien, M., Flinn, M., & Archer, E.
(2005). An analysis of online tutoring.

SCORM (2004). Advanced distributed learning.
VanLehn, K., Siler, S., Murray, C., Yamauchi, T., &

Baggett, W. (2003). Why do only some events
cause learning during human tutoring. Cognition
and Instruction, 213, 209–249.

2008 Paper No. 8218 Page 11 of 11




